Зачем метрику качества регрессии возводить в квадрат?
Речь идёт о среднеквадратичной ошибке (Mean Squared Error, MSE). От средней абсолютной ошибки (Mean Absolute Error, MAE) она отличается тем, что в ней разница между предсказанным и истинным значением возводится в квадрат. Но зачем это нужно?
▪️MSE сильнее штрафует за большие ошибки. У этого есть как плюсы, так и минусы. Если мы действительно очень не хотим получать большие ошибки, то квадратичный штраф за них очень полезен. Но если в тестовых данных есть выбросы, то использовать MSE становится менее удобно.
Зачем метрику качества регрессии возводить в квадрат?
Речь идёт о среднеквадратичной ошибке (Mean Squared Error, MSE). От средней абсолютной ошибки (Mean Absolute Error, MAE) она отличается тем, что в ней разница между предсказанным и истинным значением возводится в квадрат. Но зачем это нужно?
▪️MSE сильнее штрафует за большие ошибки. У этого есть как плюсы, так и минусы. Если мы действительно очень не хотим получать большие ошибки, то квадратичный штраф за них очень полезен. Но если в тестовых данных есть выбросы, то использовать MSE становится менее удобно.
#junior #middle
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.
A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.
Библиотека собеса по Data Science | вопросы с собеседований from ca